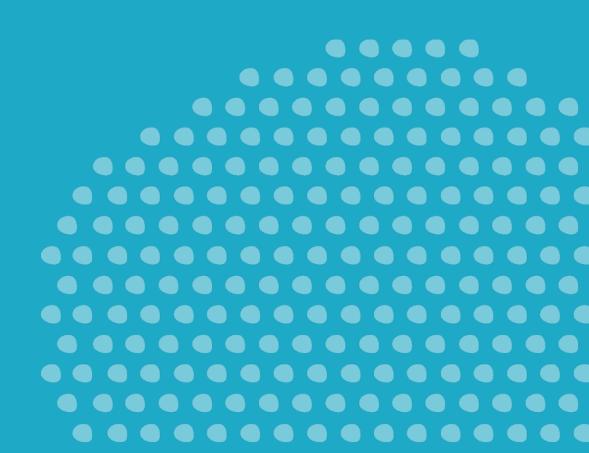
DAS MIKROBIOM DES MENSCHEN

Foliensatz für den Unterricht, Sekundarstufe II

Erstellt im Dezember 2017 von Open Science – Lebenswissenschaften im Dialog (www.openscience.or.at)

Mit Unterstützung von Univ.-Prof.Dr. Alexander Loy, Department of Microbiology and Ecosystem Science (DOME), Universität Wien (www.microbial-ecology.net)



Inhalt

- Einleitung
- Mikroorganismen
- Das menschliche Mikrobiom
- Methoden zur Mikrobiom-Analyse
- Mikrobiom in Krankheit und Gesundheit
- Forschungsprojekte und Initiativen
- Literatur

EINLEITUNG

Das Mikrobiom des Menschen, Definition

Humanes Mikrobiom, humane Mikrobiota:

Gesamtheit der Mikroorganismen, die mit dem Menschen assoziiert sind und diesen besiedeln.

Mikrobiom wird tlw. auch als kollektives Genom der Mikrobiota definiert.

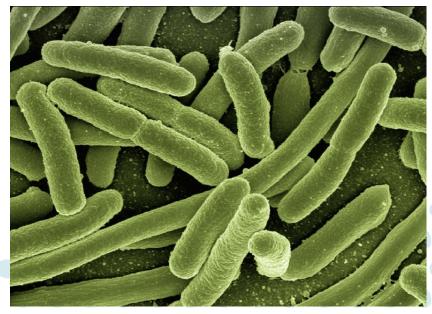


Bild: Escherichia coli Bakterien; Pixabay, CCO

Metagenom, Definition

Biozönose:

Gemeinschaft von Organismen verschiedener Arten in einem abgrenzbaren Lebensraum (**Biotop**) bzw. Standort.

Biozönose und Biotop bilden zusammen das Ökosystem.

Metagenom:

Gesamtheit der Gene (kollektives Genom) der Mikroorganismen einer bestimmten Lebensgemeinschaft oder eines Lebensraums.

Bild: Biotop; Quelle: Pixabay, CCO

Aufschwung der Mikrobiom-Forschung

Klassische mikrobielle Analyseverfahren (lange Dauer, eingeschränkte Möglichkeiten):

- Kultivieren von Bakterien/Archaeen auf Selektivmedium
- Phänotypische Charakterisierung (Physiologie, Morphologie etc.)
- DNA Sequenzierung nach Fred Sanger (entwickelt 1977)
 - → Aufwendig, geringe Kapazität

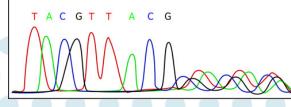


Bild: DNA-Sequenz; Pixabay, CCO

Sequenz-Analyseverfahren heute:

- Sequenzieren von vielen Sequenzen gleichzeitig aus Gemischen
- Riesige Datenmengen, bioinformatische Analysen
- Günstig und schnell

Weiterentwicklung der Sequenzier-Methoden \rightarrow Aufwind für Mikrobiom-Forschung, Boom an Projekten und Studien

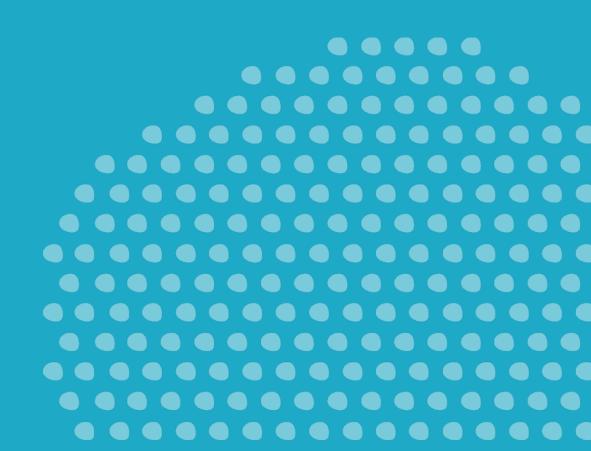
Moderne Sequenzierungsverfahren [1, 2]

"Next Generation Sequencing, NGS"

- Ultra-Hochdurchsatz-Methoden
- Moleküle an Oberflächen gebunden, hochauflösende Bilder aufgenommen
- Sequenzieren von DNA und cDNA (RNA) möglich
- Je nach Methode: Sequenzieren durch Synthese, Hybridisieren, Ligation Potential: gesamtes menschliches Genom an einem einzigen Tag sequenziert

"Third Generation Sequencing"

Nanoporensequenzierung


"Fourth Generation Sequencing"

Paralleles Sequenzieren direkt in der Zelle

Bild: DNA; Pixabay, CCO

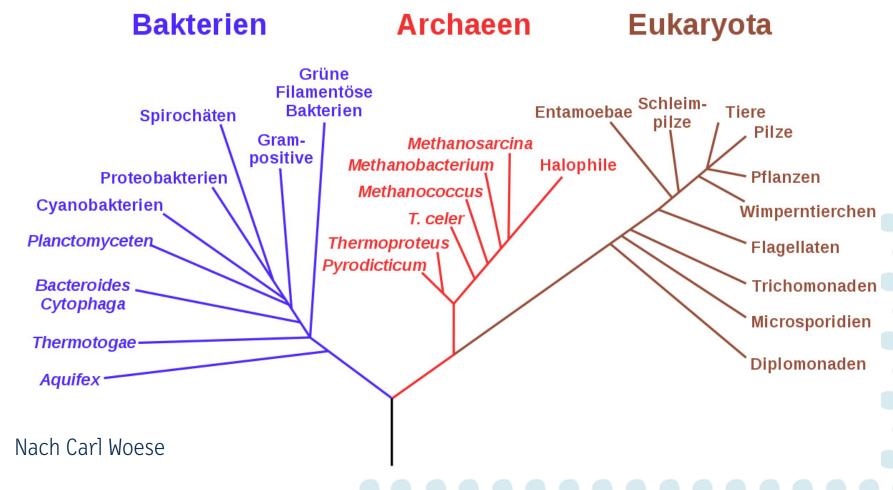
MIKROORGANISMEN

Mikroorganismen (= Mikroben, Kleinstlebewesen)

Mikroorganismen (MO) sind mikroskopisch kleine Lebewesen, dazu zählen:

Einzeller

- Bakterien
- Archaeen
- Protozoa (eukaryotische Einzeller, Beispiel: Pantoffeltierchen)


Vielzeller

- Pilze
- Algen

Per Definition keine Lebewesen, aber auch zu M0 gezählt

Viren

Evolutionäre Beziehungen der MOs

Vorkommen der MO

Ubiquitär, verschiedene Habitate (Lebensräume):

• Im Boden

• Im Wasser

• In der Luft

• In oder auf anderen Organismen

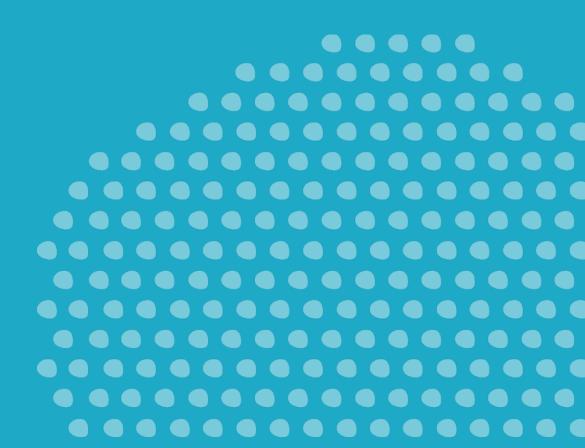
Einteilung der Bakterien

Bakterien können u.a. nach folgenden phänotypischen Kriterien eingeteilt werden:

- Aufbau der Zellwände: Gram-positive und gram-negative Bakterien.
- Abhängigkeit von Sauerstoff: Anaerobe Bakterien brauchen für ihren Stoffwechsel keinen molekularen Sauerstoff, aerobe schon.
- Temperaturoptimum für Wachstum: Psychrophile lieben die Kälte, Mesophile mittlere Temperaturen von 20 bis 45°C, Thermophile 40 bis 80°C.
- Art der Energiegewinnung: Phototrophe erlangen Energie aus Sonnenlicht,

Chemotrophe aus chemischen Reaktionen.

• Art des Kohlenstoffeinbaus in Zelle: Autotrophe fixieren CO2, Heterotrophe nehmen organische Verbindungen zum Aufbau körpereigener Stoffe auf.


Bild: Geysir, Habitat von Thermophilen; Pixabay, CCC

Mikrobielle Diversität

Beispiele für Mikrobielle Diversität:

- 1 g Boden enthält mehr als 1 Milliarde Zellen mehr als 100.000 mikrobielle Arten
- 1 g menschliche Fäkalien enthält mehr als 100 Milliarden Zellen einige 100 mikrobielle Arten
- Die Erde beherbergt
 ca. 10³⁰ Zellen
 ca. 10¹² (1 Billion) mikrobielle Arten^[3]

DAS MENSCHLICHE MIKROBIOM

Vorkommen der MO in und auf dem Menschen

- Haut
- Schleimhäute
- Verdauungstrakt
- Urogenital-Trakt
- Respiratorischer Trakt

Meiste Zellen des humanen Mikrobioms: im Darm

Der Mensch und sein Mikrobiom werden als "Super-Organismus" bezeichnet

Diversität des menschlichen Mikrobioms

Nase: rund 40 Arten

Urogenital-Trakt: rund 50 Arten

Hände: rund 200 Arten

Mund: über 500 Arten*

Verdauungstrakt: über 1.000 Arten

* Bei einem Kuss werden rund 80 Millionen Bakterienzellen übertragen [4]

Zahlen und Fakten

- Jeder Mensch: ca. 200 Gramm Mikroorganismen (mikrobielle Biomasse)
- Frühere Ansicht^[5]:

Anzahl menschliche Zellen: Anzahl Zellen von MO = 1:10

• Nach neuen Berechnungen [5]:

Anzahl menschliche Zellen: Anzahl Zellen von MO = etwa 1:1

Für Referenzmann (20-30 Jahre; 70 kg; 1,70 m) errechnet [6]:

30 Billionen menschl. Zellen (3 x 1013)

39 Billionen MO-Zellen (3,9 x 10¹³)

• 50 % der Biomasse unserer Erde sind mikrobiell

Bild: Pixabay, CCO

Mikrobieller Fingerabdruck

- Mikrobiom jedes Menschen besitzt individuelles Muster
- Jeder Mensch hinterlässt einzigartigen "mikrobiellen Fingerabdruck"
- Zukunft der Forensik: Mikroben-Analyse anstatt DNA-Analyse?

Bild: Pixabay, CCC

Studien

- 2015: Zuordnung BewohnerInnen zu Häusern aufgrund der MO; MO kamen und gingen mit BewohnerInnen, z.B. bei Umzug [7].
- 2015: Einzelne Personen anhand persönlicher MO identifiziert [8].

Formen des Zusammenlebens MO - Mensch

- Mutualistische Symbiose = gegenseitiger Nutzen zweier Symbionten Beispiele: Schutzhülle der Haut, Darmbakterien für Verdauung "Gute Mikroorganismen"
- Kommensalismus = Kommensale profitieren vom Wirt; dieser profitiert selbst nicht, wird aber auch nicht geschädigt

Meiste MO im menschlichen Mikrobiom sind Kommensale "Harmlose Mikroorganismen"

• Parasitismus = Parasiten (z.B. Pathogene) profitieren vom Wirt und schädigen diesen

Die meisten MO des Menschen sind für diesen harmlos oder nützlich!

Gute MO, schlechte MO

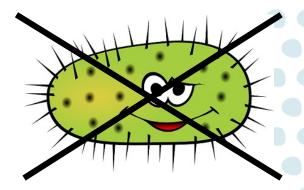
Die Guten (überwiegen in der Anzahl)

- Viele Bakterien sind für Menschen gut
- Wichtige Funktionen z.B. bei Verdauung, Schutzmantel der Haut,...
 Beispiele: Laktobazillen, Bifidobakterien, Akkermansia
- Auch wichtige Rolle bei Krankheit und Gesundheit

Die Schlechten (Pathogene)

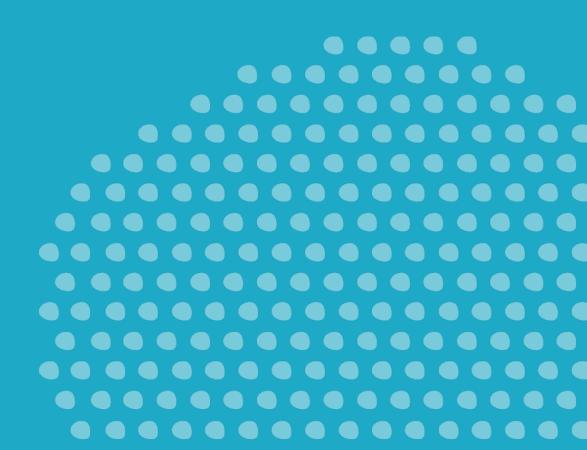
- Manche Bakterien sind gefährlich, aber nicht unbedingt lebensbedrohlich Beispiele: pathogene Kolibakterien (Magen-Darm-Beschwerden), Streptokokken (Angina), Enterokokken (Harnwegsinfekte)
- Einige wenige sind lebensbedrohlich

Beispiele: *Bacillus anthracis* (Milzbranderreger), *Clostridium perfringens* (Lebensmittelvergiftungen), *Pseudomonas aeroginosa*, *Clostridium difficile* (Krankenhauskeime), alle multiresistenten Bakterien


Antibiotika – Fluch und Segen

Antibiotikum

- Ursprünglich: Stoffwechselprodukt von Bakterien oder Pilzen, das Wachstum anderer MO hemmt oder diese tötet
- Heute: allgemeiner Begriff für Arzneimittel zur Behandlung bakterieller Infektionskrankheiten; synthetisch hergestellt


Problem bei Antibiotikagabe

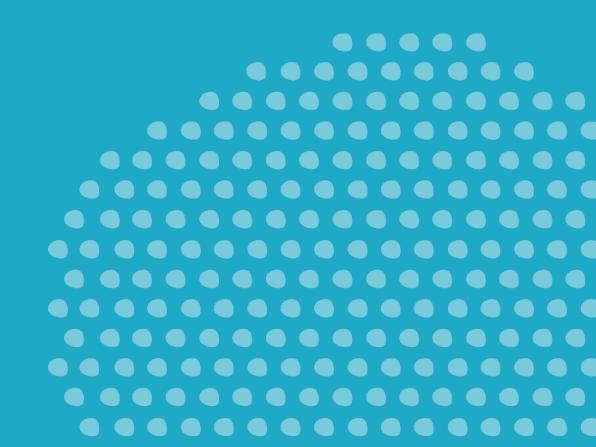
- Antibiotika zerstören nicht nur schlechte, sondern auch gute Bakterien im Körper; Anwendung nur in schwerwiegenden Fällen, Compliance!
- Antibiotikaresistenzen bei gesteigertem Einsatz von Antibiotika

METHODEN ZUR MIKROBIOM-ANALYSE

Methoden zur Untersuchung von MO

• Qualitative Analyse (Proben-Zusammensetzung und Stoffwechselvorgänge der enthaltenen M0):

Verschiedene Sequenzierungs-Strategien (16S rRNA-Analyse, Shotgun-Metagenomics, Meta-Transcriptomics).


- Quantitative Analyse (Anzahl bestimmter M0 in Probe):
 Fluoreszenz in situ Hybridisierung (FISH) mit fluoreszierenden komplementären Nucleinsäure (DNA und RNA)-Sequenzen.
- Beschreibung neuer Bakterienarten:
 Anlegen von Reinkultur (enthält nur eine Art von MO) durch wiederholtes
 Ausstreichen auf Agarplatten.

Häufige Sequenzierungsstrategien

- Fragestellung: Diversitäts-Profil (Zusammensetzung) einer Probe
 16S-rRNA-Amplikon-Analyse
 Konserviertes ribosomales 16S-rRNA-Gen wird amplifiziert und sequenziert.
- Fragestellung: Diversitäts-Profil und Genom-Erfassung einer Probe
 Shotgun-Meta-Genomics
 DNA einer Probe wird ohne Amplifikation fragmentiert, gesamter DNA-Gehalt wird sequenziert.
- Fragestellung: Aktivität der MO einer Probe
 Shotgun-Meta-Transcriptomics
 RNA einer Probe wird sequenziert, aktiv exprimierte Gene werden erfasst.

Phylogenetische Zuordnung über Abgleich mit Datenbanken; riesige Datenmengen werden generiert, Bio-Informatik bei Mikrobiom-Analyse essentiell.

MIKROBIOM IN KRANKHEIT UND GESUNDHEIT

Entwicklung des menschlichen Mikrobioms

Geburt

Unterschied natürliche Geburt (vaginale MO) und Kaiserschnitt (MO der Haut)

Frühe Kindheit

Besiedelung durch neue MO, Diversität steigt schnell, Veränderungen als Reaktion auf Ernährung oder Krankheit, Lebensumstände

Bild: Pixabay, CCO

Erwachsener

Individuelle, differenzierte Mikrobiota, Zusammensetzung der MO kann sich ändern, aber langsamer als in der Kindheit

Ältere Menschen

MO im Darm unterscheiden sich mit zunehmendem Alter von jenen junger Erwachsener, geringere Diversität

Aufgaben des Mikrobioms im Menschen

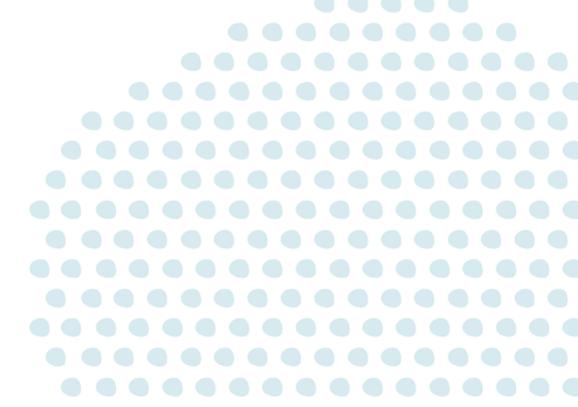
Verdauungstrakt:

- Zerlegen von Nahrung
- Bereitstellen von essenziellen Vitaminen und Nährstoffen
- Schutz gegen Krankheitserreger
- Stärkung des Immunsystems
- Aussenden von Botenstoffen ans Gehirr (Darm-Hirn-Achse)

Haut:

- Säureschutzmantel
- Schutz gegen Krankheitserreger

Bild: Pixabay, CC


Menschliches Darm-Mikrobiom

- Viele Billionen MO im Verdauungstrakt
- Darmbakterien = Großteil des menschlichen Mikrobioms
- Häufigste Taxa: Bacteroidetes, Firmicutes, Actinobacteria
- Zusammensetzung von Mensch zu Mensch verschieden
- Art der Ernährung beeinflusst Zusammensetzung des Darm-Mikrobioms
- Auch bei Erkrankungen des Magen-Darm-Trakts kann sich Zusammensetzung des Mikrobioms ändern
- Hier noch nicht immer geklärt: Frage nach Ursache Wirkung

Rolle von MO bei Krankheiten

Für folgende Erkrankungen konnte eine Korrelation mit einer veränderten Zusammensetzung des Mikrobioms gezeigt werden:

- Entzündliche Darmerkrankungen
- Übergewicht
- Diabetes
- Krebs
- Autismus

Pro- und Präbiotika

Probiotikum: Zubereitung aus lebenden MO mit gesundheitsfördernder Wirkung.

Beispiel: Probiotisches Joghurt

Präbiotikum: Unverdauliche Ballaststoffe, die Darmbakterien als Nahrung dienen.

Beispiel: Chicoree, Zwiebel, Schwarzwurzel, Artischocken, Porree

Bilder: Pixabay, CCO

Pioniere der Bakterientherapie

Ge Hong (4. Jhdt.) u. **Li Shizhen** (16. Jhdt.) aus China verwendeten "gelbe bzw. goldene Suppe" aus frischem, getrocknetem oder fermentiertem Stuhl, um Bauchbeschwerden zu behandeln.

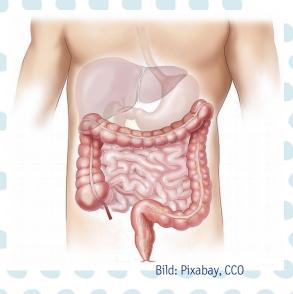
Portrait von Li Shizhen, Wikicommons

1696: Christian Franz Paullini
beschreibt in der "Heilsamen DreckApotheke" die medizinische
Anwendung menschlicher und
tierischer Ausscheidungen

Auszug aus Paullinis Heilsamer Dreck-Apotheke, Wikimedia Commons

1958: Chirurgen-Team aus Colorado behandelt *C. difficile*-Infektion mit Fäkalien [9]

Therapieansätze heute

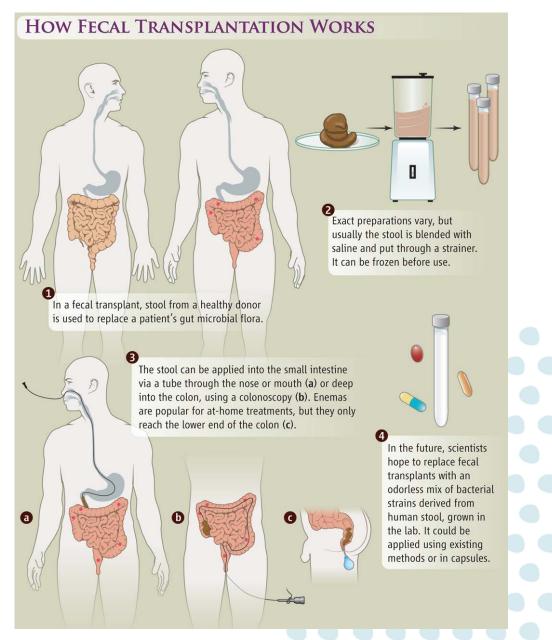


"Poop Pills": Dreifach umhüllte Pillen mit Fäkalien für Fäkaltransplantation.

Entwickelt von Thomas Louie, Professor für Medizin an der University of Calgary in Alberta.

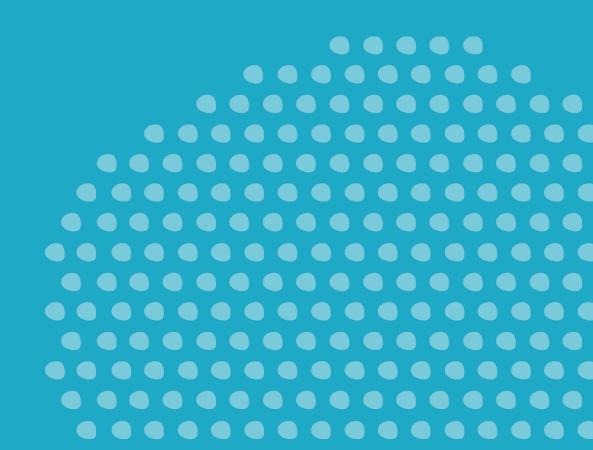
Bild: Pixabay, CCO

Microbial ecosystem therapeutics (MET): Definierte, sichere (personalisierte) Mischungen von effektiven intestinalen Kommensalen^[10].



Therapieansatz Fäkaltransplantation

Fäkaltransplantation (Stuhltransplantation, Mikrobiomtransfer):


- Eingesetzt bei Erkrankungen mit Dysbiose (Ungleichgewicht der Darmmikrobiota)
- Stuhl eines gesunden Spenders/einer gesunden Spenderin wird in Suspension mittels Einlauf oder Koloskopie in Dickdarm des Patienten/der Patientin eingebracht
- Auch Therapie mit Kapseln (poop pills) ist möglich
- Bei Clostridium difficile-assoziierter Kolitis (chronischer Entzündung des Dickdarms) bereits erfolgreich angewandt^[11, 12]
- Prinzip dahinter: MO von SpenderIn "reparieren" geschädigte Darmmikrobiota durch ihr Wachstum, Mechanismus unklar

Video zu Fäkaltransplantation: https://www.youtube.com/watch?v=MUhJoTF6ZMc

From SCIENCE 341:954 (2013). Illustration by P. Huey/Science. Reprinted with permission from AAAS. This figure may be used for non-commercial classroom purposes only. Any other use requires prior written permission from AAAS.

FORSCHUNGSPROJEKTE UND INITIATIVEN

Mikrobiom-Forschung im Aufwind

- Generell: großer Aufschwung der Mikrobiom-Forschung
- Hunderte Forschungsgruppe arbeiten weltweit am Mikrobiom
- Zahlreiche Groß-Initiativen gestartet, da Entschlüsselung des Mikrobioms eine umfangreiche und komplexe Aufgabe ist

Earth Microbiome Project (2011 – 2017)

- "Vermessung der Mikroorganismen".
- 2011 ins Leben gerufen.
- Koordiniert von der University of Chicago.
- ForscherInnen aus aller Welt sammelten und analysierten Proben verschiedenster Habitate an Land (Boden, Gebäude, menschlicher Körper,.....).
- Besonderheit: MO wurden nach einheitlicher Methode katalogisiert.
- Ziel: Analyse der mikrobiellen Gemeinschaften auf dem gesamten Globus, insgesamt 200.000 Mikrobiom-Proben.
- Finale Publikation: November 2017 [13].

Auswertung der Ergebnisse

- Gensequenzen von mehreren Millionen Organismen ausgewertet.
- Mehr als 35.000 verschiedene Probenstellen
- Besonders reiche Ressource: Böden der Erde; schon in 1 g Erde befinden sich Milliarden von Organismen.
- Geschätzte Anzahl an Spezies auf der Erde: rund eine Billion, davon der Großteil MO^[3].

Human Microbiome Project, Phase I (2008 – 2013)

- Initiative des US-amerikanischen National Institute of Health.
- Ziel: Identifizierung und Charakterisierung des menschlichen Mikrobioms.
- Besseres Verständnis, wie sich MO auf Krankheit und Gesundheit auswirken.

Fazit 2012, nach Untersuchung von rund 5.000 Proben von 240 Erwachsenen [14]:

- Geschätzter Genpool des menschlichen Mikrobioms: 8 Millionen Proteincodierende Gene (rund 360 mal mehr als im menschlichen Erbgut - ca. 22.000).
- MO produzieren auch Enzyme, die essentiell für menschliches Überleben sind.
- Geschätzte Anzahl der Mikrobenarten im menschlichen Mikrobiom eines gesunden Erwachsenen: rund 10.000.

Human Microbiome Project, Phase II (seit 2014)

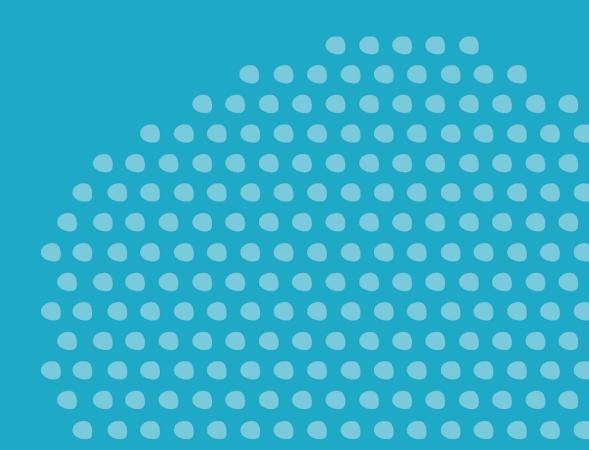
Fortführung des Projekts.

Ziel: Identifizierung und Charakterisierung des menschlichen Mikrobioms unter verschiedenen Konditionen:

- Schwangerschaft
- Chronisch-entzündliche Darmerkrankung
- Typ II Diabetes

Tara Ozean Expeditionen (2009 – 2018)

- Zusammenarbeit internationaler WissenschaftlerInnen.
- Sammlung von Proben aus Weltozeanen.
- Ziel: Analyse der weltweiten "Plankton-Ökosysteme".
- Erste Expeditionen 2009-2013:
 35.000 Proben aus 3 verschiedenen Tiefen von 210 Stationen.
- Neue Expeditionen 2016-2018.



Austrian Microbiome Initiative (AMICI)

- www.microbiome.at
- Forschungsnetzwerk f
 ür Mikrobiomforschung in Österreich.
- 2016 ins Leben gerufen.
- Ziel: Zusammenarbeit von nationalen MedizinerInnen und WissenschafterInnen aus unterschiedlichen Disziplinen stärken.
- Soll einem besseren Verständnis der Rolle der Mikroorganismen für die Gesundheit ihres Wirtes dienen.

LITERATUR

Quellenangaben zur zitierten Literatur I

- [1] Heather JM and Chain B.: *The sequence of sequencers: The history of sequencing DNA* (2016). Genomics. Volume 107, Issue 1, January 2016, p 1-8
- [2] Mignardi M. and Nilsson M.: Fourth-generation sequencing in the cell and the clinic (2014). Genome Med. 6(4): 31
- [3] Locey KJ and Lennon JT: *Scaling laws predict global microbial diversity* (2016). PNAS. 113:5970-5975
- [4] Kort R. et al.: *Shaping the oral microbiota through intimate kissing* (2014). Microbiome. 2:41
- [5] Luckey, TD: *Introduction to intestinal microecology (1972)*. Am. J. Clin. Nutr. 25, 1292-1294
- [6] Sender R. et al.: Revised estimates for the number of human and bacteria cells in the body (2016). PLoS Biol. Aug 19;14(8)

Quellenangaben zur zitierten Literatur II

- [7] Lax S. et al.: Longitudinal analysis of microbial interaction between humans and the indoor environment (2014). Science. Aug 29;345 (6200):1048-52
- [8] Franzosa EA et al.: *Identifying personal microbiomes using metagenomic codes* (2015). Proc Natl Acad Sci U S A. Jun 2;112(22):E2930-8
- [9] Eiseman B. et al.: Fecal enema as an adjunct in the treatment of pseudomembranous enterocolitis (1958). Surgery. 44:854-859.
- [10] Petrof EO and Khoruts A.: *From stool transplants to next-generation microbiota therapeutics*(2014). Gastroenterology. 146:1573–1582
- [11] van Nood E. et al.: *Duodenal Infusion of Donor Feces for Recurrent Clostridium difficile* (2013). N Engl J Med. 368:407-415
- [12] Drekonja D. et al.: *Fecal Microbiota Transplantation for Clostridium difficile Infection: A Systematic Review* (2015). Ann Intern Med. May 5;162(9):630-8

Quellenangaben zur zitierten Literatur III

[13] Thompson LR et al.: A communal catalogue reveals Earth's multiscale microbial diversity (2017). Nature. Nov 1

[14] The Human Microbiome Consortium: Structure, function and diversity of the healthy human microbiome (2012). Nature. 486, 207–214

Wir wünschen einen spannenden Unterricht zum Thema Mikrobiom

Open Science bedankt sich recht herzlich bei **Univ.-Prof. Dr. Alexander Loy** vom Department of Microbiology and Ecosystem Science in Wien für die Unterstützung beim Erstellen dieser Unterlagen!

www.www.openscience.or.at office@openscience.or.at